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Review :
The driven, undamped harmonic oscillator

•The equation of motion for harmonically driven, undamped oscillator may be written as

•If a general displacement x is given as                                  , the amplitude A is found to be

depending on  = 0 or 

and 0 = frequency of free oscillation

•The phase shift of  “0” indicates that the displacement and the driving force are in phase.

•The phase shift of  “” indicated that the displacement and the driving force are out of 
phase by .
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•(a) the amplitude of a driven oscillator versus 
with no damping.

•(b) The phase lag of the displacement relative to 
the driving force versus .
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Behavior of the forced oscillator
•Consider a mechanical forced oscillator with force  F0cost applied to damped oscillator.

•The equation of motion is given by

•The complete solution for the case is composed of  

(1) Transient term and (2)  Steady state term 
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Driven, damped harmonic oscillator 
•Generally, the applied force may be written as F0exp(it).

•Therefore, the equation of motion becomes 

•Suppose a general solution of the differential equation is

•By substituting the general solution into the equation of motion, we obtain the 
amplitude A as follows
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Description of the steady state term 
•Therefore,  the displacement can be written as 
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Mechanical impedance is a measure of how much a structure resists motion when subjected 

to a harmonic force. It relates forces with velocities acting on  a mechanical system.



Complete information of magnitude and 
phase of the steady state term

(1) The phase difference  between x

and F due to the reactive  part 

(m – s/m) of Zm.

(2) Extra phase difference gives x lags 

F by 900 even  = 0.

(3) The  amplitude of the x is  F0/|Zm |
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The amplitude of the x
•Recall the amplitude from the steady state,

•The expression clearly states that the amplitude is 
a function of the driving frequency, .

•The amplitude is still finite even though the 
driving frequency is equal to the frequency of the 
free oscillation due to the existence of the r.
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What is the resonant frequency of the forced oscillator?



How to get a resonant frequency of the 
forced oscillator?
•The resonant frequency of the forced oscillator :

•The displacement resonance occurs at a frequency slightly less than the free 
oscillation frequency 0. For a small damping constant r or a large m these two 
resonances occur at the sample frequency 0.
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How to represent the forced oscillation 
resonant frequency in terms of damping 
frequency?
•Recall the damping freely running damping frequency

•The resonant frequency of the forced oscillator :

•The resonant frequency of the forced oscillator in terms of the damping 
frequency  
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A note on the applied force
•Instead of using an exponential form, the applied force as written in terms of 
cosine or since functions leads to the steady state solution as follows

•The value of displacement x resulting from F0cos(t) is 

•The value of displacement x resulting from F0sin(t) is

•Both solutions satisfy the information given in the previous page. 
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The value of displacement x resulting from F0cos(t) and F0sin(t)
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Mechanical Impedance Zm
•Mechanical impedance is a measure of how much a structure resists motion 
when subjected to a harmonic force. It relates forces with velocities acting 
on a mechanical system.

•Mechanical impedance is a complex quantity given by

•The real part, the mechanical resistance, is independent of frequency.  

The dissipative forces (      )  are proportional to velocity.

•The imaginary part, the mechanical reactance, varies with frequency, 
becoming zero when equal to the frequency of  shm.
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Relation of the velocity and force
Provided that the driving force is given as F0cos(t), the velocity 
becomes 

1) In case of   = 0, velocity and force are in phase.

2) The amplitude of the velocity is F0/|Zm|, this leads to the definition 
of the mechanical impedance  Zm = F/V
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Problem 1
The equation                                                  describes the motion of an 
undamped simple harmonic oscillator driven by a force of frequency .
-Determine the steady state solution and sketch the behavior of the steady 
state amplitude versus .

-Also find the  general solution.
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Detailed solution of problem 1
•Using the undetermined method, the steady state solution is given as x = Acost + Bsint

•Find dx/dt and d2x/dt2 and substitute into 

•This gives the steady state solution as

•The transient solution can be found from  

•This gives a general form of the solution to be

•Finally, the complete solution becomes     
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A response of RLC series circuit
•The input voltage is equal the sum of the voltage 
across the inductor, the voltage across the capacitor 
and the voltage across the resistor.

•If  Va =V0exp(it), the solution of the above 
differential equation is given as

•Where the electrical impedance Ze is written as
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electrical system to the mechanical system and 

substituting  m for L, r for R and s for 1/C.



Behavior of velocity v in magnitude versus 
driving for frequency 

•The magnitude of the velocity amplitude varies with 
frequency    because |Zm| is frequency dependent.

•The impedance is stiffness controlled : at low 
frequency, s/ dominates.

•The impedance is mass controlled: at high frequency, 
m dominates.

•Zero reactance or minimum impedance : Zm = r  and  
velocity and driving force are in phase. This leads to the 
velocity resonance  F0/r .
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•According to the relationship between the velocity v and force F,

•The applied force is 

•Generally, v lags F by  and  

•Consider 3 situations;  > 0,  < 0 and  = 0.
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Phase behavior of velocity v versus driving 
force frequency 
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Variation of phase angle  versus 
driving force frequency  

At low frequency the velocity leads the force (  negative) and at high frequency the velocity 

lags the force (  positive).
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Behavior of displacement in magnitude 
versus driving force frequency 

•Recall the displacement                                                    when the driving force is F0cos(t), 

•Clearly, the amplitude is given as                 and 

•The amplitude function suggests that the graph of x vs  depends on 3 different ranges of .

•What would the amplitude be when → 0?

•What would the amplitude be when →  ?

•What is the driving frequency at the amplitude resonance? (Next slide!)
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The amplitude resonance of the displacement

•The displacement resonance occurs when the denominator Zm is a minimum.

•This takes place when 

•The condition gives the driving frequency  which gives the displacement resonance.

•Therefore,    

•Thus, the displacement resonance occurs at a frequency slightly less than 0, the 
frequency of velocity resonance.

•Express the driving resonance frequency in terms of damping frequency?
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Variation of the displacement of a forced 
oscillator vs driving force frequency 

•The maximum displacement at resonance 
amplitude is given as

•Due to                            (Prove this!)

•Therefore, 

•The amplitude at resonance is kept low by 
increasing r.
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Prove 

•Consider the amplitude of displacement :

• The maximum displacement at resonance amplitude is given as
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Phase behavior of displacement  
versus driving force frequency 

•Recall the displacement                                             and the driving force

•Since the displacement x lags velocity v by ..……………

•Consider when → 0, the above condition suggests that  x  lags/leads/is in phase with   F.

•Consider when → , x  lags/leads/is in phase with    F.

•Consider when  = 0, x lags/leads/is in phase with F.
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Variation of total phase angle between displacement 
and driving force vs driving frequency 
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This can be easily explained when considered each condition firstly with the phase difference 

between v and F and then x and F provided that x and v is always out of phase by /2.



Significance of the two components of 
the displacement curve (1)

•From the displacement

•This expression may be rewritten as

•Due  to                                                                  and

•The displacement is then composed of two terms: resistive fraction and reactive fraction,  
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Significance of the two components of 
the displacement curve (2)

•The  amplitude of the 
reactive fraction may be 
written as

•The amplitude of the 
resistive fraction may be 
written as 
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•This is clear that the reactive fraction becomes zero and resistive 
fraction is near its maximum at  = 0.

•However, they combine to give a maximum at , the resonant frequency 
for amplitude displacement, where
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Significance of the two components of 
the displacement curve (3)
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TRY Problem 3.10



Solution
•From the beginning of the  unit, with the equation in the form of 

•The corresponding displacement is found to be

•However, this case is undamped. 𝑍𝑚 = 𝜔𝑚 −
𝑠

𝜔
and 𝜙 =

𝜋

2
.

•This leads to 𝑥 =
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𝑚 𝜔0
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•Because  𝐸 = 𝐸0 cos𝜔𝑡, the driving force on a bound undamped electric charge –e is given by 𝐹 = −𝑒𝐸0 cos𝜔𝑡.

•This implies that 𝐹0 = −𝑒𝐸0.  Therefore, 𝑥 =
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Power supplied to an oscillator by 
the driving force

•To maintain the steady state, the average power supplied by the 
driving force just equals that being dissipated by the frictional force.
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Average power supplied by the driving force
Dissipated power by frictional force
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Variation of Pav with ; 
Absorption resonance curve

•The maximum average power is achieved when 
cos = 1 and Zm = r.

•This corresponds to the case when  = 0    and 
velocity is in phase with applied force.

•The sharpness of the peak at resonance is 
determined by the value of damping constant r.

•The curve is known as the absorption curve of 
the oscillator
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The Q-value in terms of the resonance 
absorption bandwidth

•The absorption curve in the previous slide can be used to defined the Q-value as 
follows

•where 1 and  2   are frequencies at which the power supplied

•And  
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The Q-Value as an amplification factor

•Note that for high values of Q, 
the damping constant r is small.

•The displacement amplitude 
curve  can be shown in terms of 
the quality factor Q of the 
system.
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Vibration isolation
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Vibration isolation

•Generally, the vibration isolation can be divided into to two basic types ; i.e., 

(1)    displacement isolation and  (2)    force isolation.

•The moving-base model on the left is used in designing isolation to protect the device from 
motion of its point of attachment (base).

•The model on the right is used to protect the point of attachment (ground) from vibration of the 
mass.
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Problem on displacement vibration 
insulation 

•y = vertical displacement of  
the base about its rest 
position.

•x = vertical vibration of the 
floor about its equilibrium 
position

•Requirement :Protect 
sensitive objects (i.e. heavy 
base) from vibrating floors 
and foundations. 

•Target : The ratio y/A is kept 
to a minimum.
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This ratio is known 

as transmissibility.



Equation of motion

•Suppose y > x; 

•Suppose                                                            

•Determine the derivatives of y and x and substitute in the equation of motion.

•This ends up in terms of the magnitude ratio as follows, 
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Problem on displacement vibration 
insulation (cont.)
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Physical meaning of the ratio |y/A|
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•What does it mean if the magnitude ratio is greater than 1?

•Under the condition, this is found that                     or  02 
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Displacement
Transmissibility |y/A| 

•The displacement 
vibration isolator will 
generally operate at the 
mass controlled end of the 
frequency spectrum and 
the resonant frequency is 
designed to be lower than 
the range of frequencies 
likely to be met.
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Analysis of the 
displacement transmissibility 

•From the displacement transmissibility the object 
vibrates less than the supporting surface of  vibrating 
frequency if vibration frequency                   (region of 
isolation).

•Lower-stiffness  vibration isolators decrease the natural 
frequency 0 and transmit less vibration to the object
for almost driving frequencies.

•The increasing isolator damping reduces an object’s 
vibration amplitude at                   by decresing
isolation at                   (region of amplification).                   
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02 

02 

0 

http://www.novibration.com/isoselectguide.htm



Displacement transmissibility in terms of 
damping ratio 

•By definition, the damping ratio  is given as the ratio of the damping factor to the 
critical damping factor,

•This leads to 

•Therefore, the transmissibility in terms of  is written as
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r r
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 

  
 +  
   

       − +           



Problem : Effect of speed on the amplitude 
of  car vibration

Given

(1) car speed  =  20 km/hr

(2) car mass = 1007 kg

(3) stiffness  s = 4 x 104 N/m

(4) damping constant r  = 2000 Ns/m

Determine the amplitude response of 
the car to the vibrating road surface by 
considering the surface disturbance in 
the form of a sinusoidal input.

44http://www.slideshare.net/SondiponAdhikari/base-excitation-of-dynamic-systems

y(t)

s r

20 km/hr
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𝑨𝒍𝒕𝒆𝒓𝒏𝒂𝒕𝒊𝒗𝒆𝒍𝒚,
𝒕𝒉𝒊𝒔 𝒇𝒐𝒓𝒎𝒖𝒍𝒂 𝒄𝒂𝒏 𝒃𝒆 𝒖𝒔𝒆𝒅

𝒚

𝑨
=

𝒓𝟐 +
𝒔𝟐

𝝎𝟐

𝟏
𝟐

𝒁𝒎

At the end,  y = 0.031 m



Force vibration isolation

•The vibration source is mounted on isolator 
composed of a spring with stiffness   s   and a 
damper with damping constant   r  .

•The mass is disturbed by a force F(t).

•What is the force transmissibility for isolating 
the source of vibration?
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http://slideplayer.com/slide/8032841/

s r



•Equation of motion of mass m is given by

•The solution as the displacement is written as 

•This can be written in terms of  ,  and 0 as
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Force vibration isolation (cont.)

0 sin tmx rx sx F + + =

( )0

m

cos
Z

F
x t 



−
= −

( )0
1

2 22 2

0 0

cos

1 2

F
x t 

 
 

 

−
= −

       − +           



•The response of the supporting base is due to the force combination of spring 
with stiffness s  and damper with damping constant r .

•By substituting x from the previous slide and determine the force transmissibility,
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Force vibration isolation (cont.)

( )f t sx rx= +

1
2 2

0

1
0 2 22 2

0 0

1 2

1 2
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F





 


 

  
 +  
   =

       − +           

A = vibrating amplitude of the base 



Force transmissibility curve

49http://www.kaztechnologies.com/faq/



Homework #3 
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Homework #3 (cont.)
2. 
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